The topic of IPv6 seems to come up every couple of years. The first time I recall there being a lot of hype about IPv6 was way back in the early 2000’s, ever since then the topic seems to get attention every once in a while and then disappears into insignificance alongside more exciting IT news.

The problem with IPv4 is that there are only about 3.7 billion public IPv4 addresses. Whilst this may initially sound like a lot, take a moment to think about how many devices you currently have that connect to the Internet. Globally we have already experienced a rapid uptake of Internet connected smart-phones and the recent hype surrounding the Internet of Things (IoT) promises to connect an even larger array of devices to the Internet. With a global population of approx. 7 billion people we just don’t have enough to go around.

Back in the early 2000’s there was limited support in the form of hardware and software that supported IPv6. So now that we have wide spread hardware and software IPv6 support, why is it that we haven’t all switched?

Like most things in the world it’s often determined by the capacity to monetise an event. Surprisingly not all carriers / ISP’s are on board and some are reluctant to spend money to drive the switch. Network address translation (NAT) and Classless Inter-Domain Routing (CIDR), have made it much easier to live with IPv4. NAT used on firewalls and routers lets many nodes in a network sit behind a single public IP address. CIDR, sometimes referred to as supernetting is a way to allocate and specify the Internet addresses used in inter-domain routing in a much more flexible manner than with the original system of Internet Protocol (IP) address classes. As a result, the number of available Internet addresses has been greatly increased and has allowed service providers to conserve addresses by divvying up pieces of a full range of IP addresses to multiple customers.

Perceived risk by consumers also comes into play. It is plausible that many companies may be of the view that the introduction of IPv6 is somewhat unnecessary and potentially risky in terms of effort required to implement and loss of productivity during implementation. Most corporations are simply not feeling any pain with IPv4 so it’s not on their short term radar as being of any level of criticality to their business. When considering IPv6 implementation from a business perspective, the successful adoption of new technologies are typically accompanied by some form of reward or competitive advantage associated with early adoption. The potential for financial reward is often what drives significant change.

To IPv6’s detriment from the layperson’s perspective it has little to distinguish itself from IPv4 in terms of services and service costs. Many of IPv4’s short comings have been addressed. Financial incentives to make the decision to commence widespread deployment just don’t exist.

We have all heard the doom and gloom stories associated with the impending end of IPv4. Surely this should be reason enough for accelerated implementation of IPv6? Why isn’t everyone rushing to implement IPv6 and mitigate future risk? The situation where exhaustion of IPv4 addresses would cause rapid escalation in costs to consumers hasn’t really happened yet and has failed to be a significant factor to encourage further deployment of IPv6 in the Internet.

Another factor to consider is backward compatibility. IPv4 hosts are unable to address IP packets directly to an IPv6 host and vice-versa.

So this means that it is not realistic to just switch over a network from IPv4 to IPv6. When implementing IPv6 a significant period of dual stack IPv4 and IPv6 coexistence needs to take place. This is where IPv6 is turned on and run in parallel with the existing IPv4 network. This just sounds like two networks instead of one and double administrative overhead for most IT decision makers.

Networks need to provide continued support for IPv4 for as long as there are significant levels of IPv4 only networks and services still deployed. Many IT decision makers would rather spend their budget elsewhere and ignore the issue for another year.

Only once the majority of the Internet supports a dual stack environment can networks start to turn off their continued support for IPv4. Therefore, while there is no particular competitive advantage to be gained by early adoption of IPv6, the collective internet wide decommissioning of IPv4 is likely to be determined by the late adopters.

So what should I do?

It’s important to understand where you are now and arm yourself with enough information to plan accordingly.

  • Check if your ISP is currently supporting IPv6 by visiting a website like There is a dual stack test which will let you know if you are using IPv4 alongside IPv6.
  • Understand if the networking equipment you have in place supports IPv6.
  • Understand if all your existing networked devices (everything that consumes an IP address) supports IPv6.
  • Ensure that all new device acquisitions are fully supportive of IPv6.
  • Understand if the services you consume support IPv6. (If you are making use of public cloud providers, understand if the services you consume support IPv6 or have a road map to IPv6.)

The reality is that IPv6 isn’t going away and as IT decision makers we can’t postpone planning for its implementation indefinitely. Take the time now to understand where your organisation is at. Make your transition to IPv6 a success story!!

Architecture, Strategy
, ,

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: